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Abstract
This paper presents privileged multi-label learning
(PrML) to explore and exploit the relationship be-
tween labels in multi-label learning problems. We
suggest that for each individual label, it cannot only
be implicitly connected with other labels via the
low-rank constraint over label predictors, but also
its performance on examples can receive the explicit
comments from other labels together acting as an
Oracle teacher. We generate privileged label feature
for each example and its individual label, and then
integrate it into the framework of low-rank based
multi-label learning. The proposed algorithm can
therefore comprehensively explore and exploit label
relationships by inheriting all the merits of privi-
leged information and low-rank constraints. We
show that PrML can be efficiently solved by dual
coordinate descent algorithm using iterative opti-
mization strategy with cheap updates. Experiments
on benchmark datasets show that through privileged
label features, the performance can be significantly
improved and PrML is superior to several competing
methods in most cases.

1 Introduction
Different from single-label classification, multi-label learn-
ing (MLL) allows each example to own multiple and non-
exclusive labels. For instance, when to post a photo taken in
the scene of Rio Olympics on Instagram, Twitter or Facebook,
we may simultaneously include hashtags as #RioOlympics,
#athletes, #medals and #flags. Or a related news article can be
simultaneously annotated as “Sports”, “Politics” and “Brazil”.
Multi-label learning aims to accurately allocate a group of
labels to unseen examples with the knowledge harvested from
the training data, and it has been widely-used in many appli-
cations, such as document categorization [Li et al., 2015] and
image/videos classification/annotation [Yang et al., 2016].

The most straightforward approach is 1-vs-all or Binary
Relevance (BR) [Tsoumakas et al., 2010], which decom-
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poses the multi-label learning into a set of independent bi-
nary classification tasks. However, due to neglecting label
relationships, only passable performance can be achieved.
A number of methods have thus been developed for fur-
ther improving the performance by taking label relation-
ships into consideration, such as chains of binary classifi-
cation [Read et al., 2011], ensemble of multi-class classifi-
cation [Tsoumakas et al., 2011], shared parameters [Liu et
al., 2017] and label-specific features [Zhang and Wu, 2015;
Xu et al., 2015]. Recently, embedding-based methods have
emerged as a mainstream solution of the multi-label learn-
ing problem. The approaches assume that the label ma-
trix is low-rank, and adopt different manipulations to em-
bed the original label vectors, such as principal component
analysis [Tai and Lin, 2012], latent representation [Xu et
al., 2016a], and manifold deduction [Bhatia et al., 2015;
Hou et al., 2016].

Most of low-rank based multi-label learning algorithms
exploit label relationships in the hypothesis space. The hy-
potheses of different labels are interacted with each other
under the low-rank constraint, which is as an implicit use of
label relationships. By contrast, multiple labels can help each
other in a more explicit way, where the hypothesis of a label
is not only evaluated by the label itself, but also can be as-
sessed by the other labels. More specifically in multi-label
learning, for the label hypothesis at hand, the other labels can
together act as an Oracle teacher to provide some comments
on its performance, which is then beneficial for updating the
learner. Multiple labels of examples can only be accessed in
the training stage instead of the testing stage, and then Oracle
teachers only exist in the training stage. This privileged setting
has been studied in LUPI (learning using privileged informa-
tion) paradigm [Vapnik et al., 2009; Vapnik and Vashist, 2009;
Vapnik and Izmailov, 2015] and it has been reported that ap-
propriate privileged information can boost the performance in
ranking [Sharmanska et al., 2013] and classification [Pechy-
ony and Vapnik, 2010].

In this paper, we bridge connections between labels through
privileged label information and then formulate an effective
privileged multi-label learning (PrML) method. For each label,
each example’s privileged label feature can be generated from
other labels. Then it is able to provide additional guidance on
the learning of this label, given the underlying connections
between labels. By integrating the privileged information into
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the low-rank based multi-label learning, each label predictor
learned from the resulting model not only interacts with other
labels via their predictors, but also receives explicit comments
from these labels. Iterative optimization strategy is employed
to solve PrML, and we theoretically show that each subprob-
lem can be solved by dual coordinate descent algorithm with
the guarantee of solution’s uniqueness. Experimental results
demonstrate the significance of exploiting the privileged label
features and the effectiveness of the proposed algorithm.

2 Problem Formulation
In this section we elaborate the intrinsic privileged informa-
tion in multi-label learning and formulate the corresponding
privileged multi-label learning (PrML) as well.

We first introduce multi-label learning (MLL) problem and
its frequent notations. Given n training points, we denote
the whole data set as D = {(x1,y1), ..., (xn,yn)}, where
xi ∈ X ⊆ Rd is the input feature vector and yi ∈ Y ⊆
{−1, 1}L is the corresponding label vector with the label size
L. Let X = [x1,x2, ...,xn] ∈ Rd×n be the data matrix
and Y = [y1,y2, ...,yn] ∈ {−1, 1}L×n be the label matrix.
Specifically, Yij = 1 if and only if the i-th label is assigned
to the example xj and Yij = −1 otherwise. Given the dataset
D, multi-label learning is formulated as learning a mapping
function f : Rd → {−1, 1}L that can accurately predict labels
for unseen test points.

2.1 Low-rank Multi-label Embedding
A straightforward manner to parameterize the decision func-
tion is using linear classifiers, i.e. f(x) = ZTx =
[z1, ..., zL]

Tx where Z ∈ Rd×L. Note that the linear form
is actually incorporated with the bias term by augmenting
an additional 1 to the feature vector x. Binary Relevance
(BR) method [Tsoumakas et al., 2010] decomposes multi-
label learning into a set of single-label learning problems.
The binary classifier for each label can be obtained by the
widely-used SVM method:

min
zi=[z∗

i ;bi],ξi

1

2
‖z∗i ‖

2
2 + C

n∑
j=1

ξij

s.t. Yij(〈z∗i ,xj〉+ bi) ≥ 1− ξij
ξij ≥ 0, ∀j = 1, ..., n,

(1)

where ξi = [ξi1, ..., ξin]
T is slack variable and 〈·〉 is the

inner product between two vectors or matrices. Predictors
{z1, ..., zL} of different labels are thus independently solved
without considering relationships between labels, which limits
the classification performance of BR method.

Some labels can be closely connected and used to occur to-
gether on examples, and thus the label matrix is often supposed
to be low-rank, which leads to the low rank of label predictor
matrix Z = [z1, ..., zL] as a result. Considering the rank of
Z as k, which is smaller than d and L, we are able to em-
ploy two smaller matrices to approximate Z, i.e. Z = DTW .
D ∈ Rk×d can be seen as a dictionary of hypotheses in latent
space Rk, while each wi in W = [w1, ...,wL] ∈ Rk×L is
the coefficient vector to generate the predictor of i-th label

from the hypothesis dictionary D. Each classifier zi is repre-
sented as zi = DTwi (i = 1, 2, ..., L) and Problem (1) can
be extended into:

min
D,W,ξ

1

2
(‖D‖2F +

L∑
i=1

‖wi‖22) + C
L∑
i=1

n∑
j=1

ξij

s.t. Yij(〈DTwi,xj〉) ≥ 1− ξij
ξij ≥ 0, ∀i = 1, ..., L; j = 1, ..., n,

(2)

where ξ = [ξ1, ..., ξL]
T . Thus in Eq.(2), the classifiers of

all labels zi are drawn from an identical low-dimensional
subspace, i.e. the row space ofD. Then using block coordinate
descent, either D or W can be solved within the empirical risk
minimization (ERM) framework by turning it into a hinge loss
minimization problem.

2.2 Privileged Information in Multi-label Learning
The slack variable ξij in Eq.(2) indicates the prediction error
of the j-th example on the i-th label. In fact, it depicts the
error-tolerant ability of a model, and is directly related to the
optimal classifier and its classification performance. From
a different point of view, slack variables can be regarded as
comments of some Oracle Teacher on the performance of
predictors on each example. In multi-label context for each
label, its hypothesis is not only evaluated by itself, but also
assessed by the other labels. Thus other labels can be seen as
its Oracle teacher, who will provide some comments during
this label’s learning. Note that these label values are known as
a priori only during training; when we get down to learning
the i-th label’s predictor, we actually know the values of other
labels for each training point xj . Therefore, we can formulate
the other label values as privileged information (or hidden
information) of each example. Let

ỹi,j
M
= yj , with i-th element being 0. (3)

We call ỹi,j the training point xj’s privileged label feature
on the i-th label. It can be seen that the privileged label
space is constructed straightforwardly from the original label
space. These privileged label features can thus be regarded
as an explicit way to connect all labels. In addition, note
that the valid dimension (removing 0) of ỹi,j is L− 1, since
we take the other L − 1 label values as the privileged label
features. Moreover, not all the other labels have the positive
impact on the learning of some label [Sun et al., 2014], and
thus it is appropriate to strategically select some key labels to
formulate the privileged label features. We will discuss this in
the Experiment section.

Since for each label, the other labels serve as the Oracle
teacher via the privileged label feature ỹi,j on each example,
the comments on slack variables can be modelled as a linear
function [Vapnik and Vashist, 2009],

ξij(ỹi,j ; w̃i) = 〈w̃i, ỹi,j〉. (4)

The function ξij(ỹi,j ; w̃i) is thus called correcting function
with respect to the i-th label, where w̃i is the parameter vector.
As shown in Eq.(4), the privileged comments ỹi,j directly
correct the values of slack variables as the prior knowledge
or the additional information. Integrating privileged features
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as Eq.(4) into the SVM stimulates the popular SVM+ method
[Vapnik and Vashist, 2009], which has been proved to improve
the convergence rate and the performance.

Integrating the proposed privileged label features into the
low-rank parameter structure as Eqs.(2) and (4), we formu-
late a new multi-label learning model, privileged multi-label
learning (PrML) by casting it into the SVM+-based LUPI
paradigm,

min
D,W,W̃

1

2
‖D‖2F +

1

2

L∑
i=1

(γ1 ‖wi‖22 + γ2 ‖w̃i‖22)

+C
L∑
i=1

n∑
j=1

〈w̃i, ỹi,j〉

s.t. Yij〈DTwi,xj〉 ≥ 1− 〈w̃i, ỹi,j〉
〈w̃i, ỹi,j〉 ≥ 0, ∀i = 1, ..., L; j = 1, ..., n,

(5)

where W̃ = [w̃1, ..., w̃L]. Particularly, we absorb the bias
term to obtain a compact variant of the original SVM+, be-
cause it is turned out to have a simpler form in the dual space
and can be solved more efficiently. In this way, the training
data within multi-label learning is actually in the triplet fash-
ion, i.e. (xi,yi, Ỹi), i = 1, ..., n, where Ỹi = [ỹ1,i, ..., ỹL,i] is
the privileged label feature matrix for each label.

Remark. When W = I , i.e. the low-dimensional pro-
jection is identical, the proposed PrML degenerates into a
simpler BR-style model (we call it privileged Binary Rele-
vance, PrBR), where the whole model decomposes into L
independent binary models. However, every single model is
still combined with the comments form privileged information,
thus it may still be superior to BR.

3 Optimization

In this section, we present how to solve the proposed algorithm
Eq.(5). The whole model of Eq.(5) is not convex due to the
multiplication of DTwi in constraints. However, each sub-
problem with fixed D or W is convex. Note that 〈DTwi,xj〉
has two equivalent forms, i.e. 〈wi, Dxj〉 and 〈D,wixTj 〉, and
thus the correcting function can be coupled withD orW , with-
out damaging the convexity of either subproblem. In this way,
Eq.(5) can be solved using the alternative iteration strategy,
i.e. iteratively conducting the following two steps: optimiz-
ing W and privileged variable W̃ with fixed D, and updating
D and privileged variable W̃ with fixed W . Both subprob-
lems are related to SVM+, inducing their dual problems to be
quadratic programming (QP). In the following, we elaborate
the solving process in real implementations.

3.1 Optimizing W, W̃ with Fixed D

Fixing D, Eq.(5) can be decomposed into L independent bi-
nary classification problems, each of which regards the vari-
able pair (wi, w̃i). Parallel techniques or multi-core computa-
tion can thus be employed to speed up the training process. In

specific, the optimization problem with respect to (wi, w̃i) is

min
wi,w̃i

1

2
(γ1 ‖wi‖22 + γ2 ‖w̃i‖22) + C

n∑
j=1

〈w̃i, ỹi,j〉

s.t. Yij〈wi, Dxj〉 ≥ 1− 〈w̃i, ỹi,j〉
〈w̃i, ỹi,j〉 ≥ 0, ∀j = 1, ..., n.

(6)

and its dual form is

max
α,β

− 1

2
(α ◦ y∗i )TKD(α ◦ y∗i ) + 1Tα

− 1

2γ
(α+ β − C1)T K̃i(α+ β − C1)

(7)

with the parameter update γ ← γ2/γ1, C ← C/γ1 and the
constraints α � 0,β � 0, i.e. αj ≥ 0, βj ≥ 0, ∀j ∈
[1 : n]. Moreover, y∗i = [Yi1, Yi2, ..., Yin]

T is the label-
wise vectors for the i-th label. ◦ is the Hadamard (element-
wise) product of two vectors or matrices. KD ∈ Rn×n
is the D-based features’ inner product (kernel) matrix with
KD(j, q) = 〈Dxj , Dxq〉. K̃i is the privileged label features’
inner product (kernel) matrix with respect to the i-th label,
where K̃i(j, q) = 〈ỹi,j , ỹi,q〉. 1 is the vector with all ones.

[Pechyony et al., 2010] proposed an SMO-style algorithm
(gSMO) for SVM+ problem. However, because of the bias
term, the Lagrange multipliers are tangled together in the dual
problem, which leads to a more complicated constraint set

{(α,β)|αTy∗i = 0,1T (α+ β − C1) = 0,α � 0,β � 0}

than {(α,β)|α � 0,β � 0} in our PrML. Hence by absorb-
ing the bias term, Eq.(6) can produce a more compact dual
problem only with non-negative constraint. Thus this dual
QP problem [Zhang et al., 2017] can use coordinate descent
(CD)1 algorithm, and a closed-form solution can be obtained
in each iteration step [Li et al., 2016]. After solving the Eq.(7),
according to the Karush-Kuhn-Tucker (KKT) conditions, the
optimal solution for the primal problem (6) can be expressed
by the Lagrange multipliers:

wi =
∑n
j=1 αjYijDxj

w̃i = 1
γ

∑n
j=1(αj + βj − C)ỹi,j

(8)

3.2 Optimizing D, W̃ with Fixed W
Given fixed coefficient matrix W , we update and learn the
linear transformation D with the help of comments provided
by privileged information. Thus the problem (5) for (D, W̃ )
is reduced to

min
D,W̃

1

2
‖D‖2F +

γ2

2

L∑
i=1

‖w̃i‖22 + C
L∑
i=1

n∑
j=1

〈w̃i, ỹi,j〉

s.t. Yij〈D,wixTj 〉 ≥ 1− 〈w̃i, ỹi,j〉
〈w̃i, ỹi,j〉 ≥ 0, ∀i = 1, ..., L; j = 1, ..., n.

(9)

Eq.(9) has Ln constraints, each of which can be indexed with
a two-dimensional subscript [i, j]. The Lagrange multipliers

1We optimize an equivalent “min” problem instead of the original
“max” one.
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Algorithm 1 Privileged Multi-label Learning (PrML)

Input: Training data: feature matrix X = [x1,x2, ...,xn] ∈
Rd×n, label matrix Y = [y1,y2, ...,yn] ∈ {−1, 1}L×n.
Learning parameters: γ1, γ2, C ≥ 0.

1: Construction of privileged label features for each label
and each training point, e.g. as Eq.(3).

2: initialization of D
3: while not convergence do
4: for each i ∈ [1 : L] do
5: [α,β]← solving Eq.(7)
6: update wi, w̃i according to Eq.(8)
7: end for
8: [α,β]← solving Eq.(10)
9: update D, W̃ according to Eq.(11)

10: end while
Output: A linear multi-label classifier Z = DTW , together

with a correcting function W̃ w.r.t. L labels.

of Eq.(9) are thus two-dimensional as well. To make the
dual problem of Eq.(9) consistent with Eq.(7), we define a
bijection φ : [1 : L] × [1 : n] → [1 : Ln] as the row-based
vectorization index mapping, i.e. φ([i, j]) = (i− 1)n+ j. In
a nutshell, we arrange the constraints (also the multipliers)
according to the order of row-based vectorization. In this way,
the corresponding dual problem of Eq.(9) is formulated as

max
α�0,β�0

− 1

2
(α ◦ y∗)TKW (α ◦ y∗) + 1Tα

− 1

2γ2
(α+ β − C1)T K̃(α+ β − C1)

(10)

where y∗ = [y∗1;y
∗
2; ...;y

∗
L] is the row-based vectorization

of Y and K̃ = diag(K̃1, K̃2, ..., K̃L) is a block diagonal
matrix, which corresponds to the kernel matrix of privileged
label features. KW is the kernel matrix of input features
with every element KW (s, t) = 〈Gφ−1(s), Gφ−1(t)〉, where
Gij = wix

T
j . Based on the KKT conditions, (D, W̃ ) can be

constructed using (α,β):

D =
∑Ln
s=1 αsy

∗
sGφ−1(s)

w̃i = 1
γ2

∑n
j=1(αφ([i,j]) + βφ([i,j]) − C)ỹi,j

(11)

In this way, Eq.(10) has an identical optimization form with
Eq.(7). Thus we can also turn it to the fast CD method [Li
et al., 2016]. However, due to the script index mapping, di-
rectly using the method proposed in [Li et al., 2016] is very
expensive. Some modification is required for adaption and
acceleration, such as applying the block sparsity of the priv-
ileged kernel matrix K̃. Also note that one primary merit of
this algorithm is the free calculation of the whole kernel matrix.
Instead, we only need to calculate its diagonal elements.

3.3 Framework of PrML
Our proposed privileged multi-label learning is summarized
in Algorithm 1. As indicated in Algorithm 1, both D and
W are updated with the help of comments from privileged
information. Note that the primal variables and dual variables

Table 1: Data statistics. n is the total number of examples. d and L
are the number of features and labels, respectively; L̄ and Den(L)
are the average number of positive labels in an instance and the label
density, respectively. ‘Type’ means feature type.

Dataset n d L L̄ Den(L) type
enron 1702 1001 53 3.378 0.064 nominal
yeast 2417 103 14 4.237 0.303 numeric
corel5k 5000 499 374 3.522 0.009 nominal
bibtex 7395 1836 159 2.402 0.015 nominal
eurlex 19348 5000 3993 5.310 0.001 nominal
mediamill 43907 120 101 4.376 0.043 numeric

are connected with KKT connections, and thus in real appli-
cations lines 5-6 and 8-9 in Algorithm 1 can be implemented
iteratively. Since each subproblem is actually a linear SVM+
optimization and solved by the CD method, its convergence is
consistent with that of the dual CD algorithm for linear SVM
[Hsieh et al., 2008]. Due to the cheap updates, [Hsieh et al.,
2008; Li et al., 2016] empirically showed it can be much faster
than GMO-style methods and many other convex solvers when
d (number of features) is large. Moreover, the independence
of labels in Problem (6) enables to use parallel techniques and
multicore computation to accommodate the large L (number
of labels). As for a large n (number of examples) (also large L
for Problem (9)), we can use mini-batch CD method [Takac et
al., 2015] , where each time a batch of examples are selected
and CD updates are parallelly applied to them, i.e. lines 5-17
can be implemented parallelly. Also recently [Chiang et al.,
2016] designed a framework for parallel CD and achieved
significant speeding up even when the d and n are very large.
Thus, our model can scale to d, L and n. In addition, the
solution for each of subproblem is also unique, as Theorem 1
stated.
Theorem 1. The solution to the problem (6) or (9) is unique
for any γ1 > 0, γ2 > 0, C > 0.

Proof of Theorem 1 mainly lies in the strict convexity of
the objective function in either Eq.(6) or (9). In this way, the
correcting function W̃ serves as a bridge to channel the D and
W , and the convergence of W̃ infers the convergence of D
and W . Thus we can take W̃ as the barometer of the whole
algorithm’s convergence.

4 Experimental Results
In this section, we conduct various experiments on benchmark
datasets to validate the effectiveness of using the intrinsic
privileged information for multi-label learning. In addition,
we also investigate the performance and superiority of the
proposed PrML model comparing to recent competing multi-
label methods.

4.1 Experiment Configuration
Datasets. We select six benchmark multi-label datasets,

including enron, yeast, corel5k, bibtex, eurlex and mediamill.
Specially, we consider the cases when d (eurlex), L (eurlex)
and n (corel5k, bibtex, eurlex & mediamill) are large respec-
tively. Also note that enron, corel5k, bibtex and eurlex are of
sparse features. See Table 1 for the details of these datasets.

Comparison approaches.
1). BR (binary relevance) [Tsoumakas et al., 2010]. An SVM
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is trained with respect to each label.
2). ECC (ensembles of classifier chains) [Read et al., 2011].
It turns ML into a series of binary classification problems.
3). RAKEL (random k-labelsets) [Tsoumakas et al., 2011]. It
transforms MLL into an ensemble of multi-class classification
problems.
4). LEML (low rank empirical risk minimization for multi-
label learning) [Yu et al., 2014]. It is a low-rank embedding
approach which is casted into ERM framework.
5). ML2 (multi-label manifold learning) [Hou et al., 2016]. It
is a latest multi-label learning method, which is based on the
manifold assumption in label space.

Evaluation Metrics. We use six prevalent metrics to evalu-
ate the performance of all methods, including Hamming loss,
One-error, Coverage, Ranking loss, Average precision (Aver
precision) and Macro-averaging AUC (Mac AUC). Note that
all evaluation metrics have the value range [0,1]. In addition,
for the first four metrics, the smaller values would indicate the
better classification performance and we use ↓ to index this
positive logic. On the contrary, for the last two metrics larger
values represent the better performance, indexed by ↑.

4.2 Validation of Privileged Label Features
We first validate the effectiveness of the proposed privileged
information for multi-label learning. As discussed previously,
the privileged label features serve as an guidance or comments
from an Oracle teacher to connect the learning of all the labels.
For the sake of fairness, we simply implement the validation
experiments with LEML (without privileged label features)
and PrML (with privileged label features). Note that our pro-
posed privileged label features are composed with the values
of labels; however, not all labels have prominent connections
in multi-label learning [Sun et al., 2014]. Thus we selectively
construct the privileged label features with respect to each
label.

Particularly, we just use K-nearest neighbor rule to form
the pool per label. For each label, only labels in its label
pool, instead of the whole label set, are reckoned to provide
mutual guidance during its learning. In our implementation,
we simply utilize Hamming distance to accomplish search of
K-nearest neighbor on the dataset corel5k. Particularly, we
randomly selected 50% examples without repeating as the
training set and the rest ones as the testing set. In our experi-
ment, parameter γ1 is set to be 1; γ2 and C are in the range of
0.1 ∼ 2.0 and 10−3 ∼ 20 respectively, and determined using
cross validation by a part of training points. Both algorithms
have the same embedding dimension k = d0.9Le, where dre
is the smallest integer greater than r. Moreover, we carry out
independent tests ten times and the average results are shown
in Figure 1.

As shown in Figure 1, we have the following two observa-
tions. (a) PrML is clearly superior to LEML when we select
enough labels as privileged label features, e.g. more than
350 labels in corel5k dataset. Since their only difference lies
in the usage of the privileged information, we can conclude
that the guidance from the privileged information, i.e. the
proposed privileged label features, can significantly improve
the performance of multi-label learning. (b) With more la-
bels involved in the privileged label features, the performance

50 150 250 350 365 373
0.01

0.012

0.014

0.016

PrML

LEML

(a) Hamming loss ↓
50 150 250 350 365 373

0.65

0.7

0.75

0.8

0.85

PrML

LEML

(b) One-error ↓
50 150 250 350 365 373

0.265

0.27

0.275

0.28

0.285

PrML

LEML

(c) Coverage ↓

50 150 250 350 365 373
0.115

0.12

0.125

0.13

(d) Ranking loss ↓
50 150 250 350 365 373

0.265

0.27

0.275

0.28

0.285

(e) Aver precision ↑
50 150 250 350 365 373

0.6

0.62

0.64

0.66

(f) Mac AUC ↑

Figure 1: Classification results of PrML (blue solid line) and LEML
(red dashed line) on corel5k (50% for training & 50% for testing) w.r.t.
different dimension of privileged label features. In each subfigure,
the horizontal axis represents the number of privileged label features
while the vertical axis indicates the corresponding metric values.

of PrML keeps improving in a steady speed, and when the
dimension of privileged label features is large enough, the
performance tends to stabilize on the whole.

The number of labels is directly related to the complexity
of correcting function defined as a linear function. Thus few
labels might induce the low function complexity, and the cor-
recting function can not determine the optimal slack variables.
In this way, the fault-tolerant capacity would be crippled and
thus the performance is even worse than LEML. For example,
when the dimension of privileged labels is less than 250 on
corel5k, the Hamming loss, One-error, Coverage and Ranking
loss of PrML is much larger than LEML. In contrast, over-
much labels might introduce unnecessary guidance of labels,
and the extra labels thus make no contribution to the further
improvement of classification performance. For instance, the
performance with 365 labels involved in privileged label fea-
tures would be on par with that of all the other (373) labels in
Hamming loss, One-error, Ranking loss and Average precision.
Moreover, in real applications, it is still a safe choice that all
other labels are involved in privileged information.

4.3 Performance Comparison
Now we formally analyze the performance of our proposed
privileged multi-label learning (PrML) in comparison with
popular state-of-the-art methods. For each dataset, we ran-
domly selected 50% examples without repeating as the train-
ing set and the rest for testing. For the results’ credibility,
the dataset division process is implemented ten times inde-
pendently and we recorded the corresponding results in each
trail. Parameters γ1, γ2 and C are determined in the same
manner as before. As for the low embedding dimension k,
following the wisdom of [Yu et al., 2014], we choose k to
be in {d0.8Le, d0.85Le, d0.9Le, d0.95Le} and determined by
cross validation using a part of training points. Particularly, we
also cover the PrBR (privileged information + BR) to further
investigate the proposed privileged information. The detailed
results are reported in Table 2.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3340



Table 2: Average predictive performance (mean ± std. deviation) of ten indepedent trails for various multi-label learning methods. In each trail,
50% examples are randomly selected without repeating as training set and the rest as testing set. The top performance among all methods is
marked in boldface.

dataset method Hamming loss ↓ One-error ↓ Coverage ↓ Ranking loss ↓ Aver precision ↑ Mac AUC ↑

enron

BR 0.060±0.001 0.498±0.012 0.595±0.010 0.308±0.007 0.449±0.011 0.579±0.007
ECC 0.056±0.001 0.293±0.008 0.349±0.014 0.133±0.004 0.651±0.006 0.646±0.008

RAKEL 0.058±0.001 0.412±0.016 0.523±0.008 0.241±0.005 0.539±0.006 0.596±0.007
LEML 0.049±0.002 0.320±0.004 0.276±0.005 0.117±0.006 0.661±0.004 0.625±0.007

ML2 0.051±0.001 0.258±0.090 0.256±0.017 0.090±0.012 0.681±0.053 0.714±0.021
PrBR 0.053±0.001 0.342±0.010 0.238±0.006 0.088±0.003 0.618±0.004 0.638±0.005
PrML 0.050±0.001 0.288±0.005 0.221±0.005 0.088±0.006 0.685±0.005 0.674±0.004

yeast

BR 0.201±0.003 0.256±0.008 0.641±0.005 0.315±0.005 0.672±0.005 0.565±0.003
ECC 0.207±0.003 0.244±0.009 0.464±0.005 0.186±0.003 0.752±0.006 0.646±0.003

RAKEL 0.202±0.003 0.251±0.008 0.558±0.006 0.245±0.004 0.720±0.005 0.614±0.003
LEML 0.201±0.004 0.224±0.003 0.480±0.005 0.174±0.004 0.751±0.006 0.642±0.004

ML2 0.196±0.003 0.228±0.009 0.454±0.004 0.168±0.003 0.765±0.005 0.702±0.007
PrBR 0.227±0.004 0.237±0.006 0.487±0.005 0.204±0.003 0.719±0.005 0.623±0.004
PrML 0.201±0.003 0.214±0.005 0.459±0.004 0.165±0.003 0.771±0.003 0.685±0.003

corel5k

BR 0.012±0.001 0.849±0.008 0.898±0.003 0.655±0.004 0.101±0.003 0.518±0.001
ECC 0.015±0.001 0.699±0.006 0.562±0.007 0.292±0.003 0.264±0.003 0.568±0.003

RAKEL 0.012±0.001 0.819±0.010 0.886±0.004 0.627±0.004 0.122±0.004 0.521±0.001
LEML 0.010±0.001 0.683±0.006 0.273±0.008 0.125±0.003 0.268±0.005 0.622±0.006

ML2 0.010±0.001 0.647±0.007 0.372±0.006 0.163±0.003 0.297±0.002 0.667±0.007
PrBR 0.010±0.001 0.740±0.007 0.367±0.005 0.165±0.004 0.227±0.004 0.560±0.005
PrML 0.010±0.001 0.675±0.003 0.266±0.007 0.118±0.003 0.282±0.005 0.651±0.004

bibtex

BR 0.015±0.001 0.559±0.004 0.461±0.006 0.303±0.004 0.363±0.004 0.624±0.002
ECC 0.017±0.001 0.404±0.003 0.327±0.008 0.192±0.003 0.515±0.004 0.763±0.003

RAKEL 0.015±0.001 0.506±0.005 0.443±0.006 0.286±0.003 0.399±0.004 0.641±0.002
LEML 0.013±0.001 0.394±0.004 0.144±0.002 0.082±0.003 0.534±0.002 0.757±0.003

ML2 0.013±0.001 0.365±0.004 0.128±0.003 0.067±0.002 0.596±0.004 0.911±0.002
PrBR 0.014±0.001 0.426±0.004 0.178±0.010 0.096±0.005 0.529±0.009 0.702±0.003
PrML 0.012±0.001 0.367±0.003 0.131±0.007 0.066±0.003 0.571±0.004 0.819±0.005

eurlex

BR 0.018±0.004 0.537±0.002 0.322±0.008 0.186±0.009 0.388±0.005 0.689±0.007
ECC 0.011±0.003 0.492±0.003 0.298±0.004 0.155±0.006 0.458±0.004 0.787±0.009

RAKEL 0.009±0.004 0.496±0.007 0.277±0.009 0.161±0.001 0.417±0.010 0.822±0.005
LEML 0.003±0.002 0.447±0.005 0.233±0.003 0.103±0.010 0.488±0.006 0.821±0.014

ML2 0.001±0.001 0.320±0.001 0.171±0.003 0.045±0.007 0.497±0.003 0.885±0.003
PrBR 0.007±0.008 0.484±0.003 0.229±0.009 0.108±0.009 0.455±0.003 0.793±0.008
PrML 0.001±0.002 0.299±0.003 0.192±0.008 0.057±0.002 0.526±0.009 0.892±0.004

mediamill

BR 0.031±0.001 0.200±0.003 0.575±0.003 0.230±0.001 0.502±0.002 0.510±0.001
ECC 0.035±0.001 0.150±0.005 0.467±0.009 0.179±0.008 0.597±0.014 0.524±0.001

RAKEL 0.031±0.001 0.181±0.002 0.560±0.002 0.222±0.001 0.521±0.001 0.513±0.001
LEML 0.030±0.001 0.126±0.003 0.184±0.007 0.084±0.004 0.720±0.007 0.699±0.010

ML2 0.035±0.002 0.231±0.004 0.278±0.003 0.121±0.003 0.647±0.002 0.847±0.003
PrBR 0.031±0.001 0.147±0.005 0.255±0.003 0.092±0.002 0.648±0.003 0.641±0.004
PrML 0.029±0.002 0.130±0.002 0.172±0.004 0.055±0.006 0.726±0.002 0.727±0.008

From Table 2, we can see the proposed PrML is comparable
to the state-of-the-art ML2 method, and significantly surpasses
the other competing multi-label methods. Concretely, across
all evaluation metrics and datasets, PrML ranks first in 52.8%
cases and the first two in all cases; even in the second place,
PrML’s performance is close to the top one. Comparing BR &
PrBR, and LEML & PrML, we can safely infer that the priv-
ileged information plays an important role in enhancing the
classification performance of multi-label predictors. Besides,
in all the 36 cases, PrML wins 34 cases against PrBR and plays
a tie twice in Ranking loss on enron and Hamming loss on
corel5k respectively, which implies that the low-rank structure
in PrML has positive impact in further improving the multi-
label performance. Therefore, we can see PrML has inherited
the merits of both low-rank parameter structure and privileged
label information. In addition, PrML and LEML tend to per-
form better on datasets with more labels (>100). This might
be because the low-rank assumption is more sensible when
the number of labels is considerably large.

5 Conclusion

In this paper, we investigate the intrinsic privileged informa-
tion to connect labels in multi-label learning. Tactfully, we
regard the label values as the privileged label features. This
strategy indicates that for each label’s learning, other labels
of each example may serve as its Oracle comments on the
learning of this label. Then we propose to actively construct
privileged label features directly from the label space. Dur-
ing the optimization, both the dictionary D and the coeffi-
cient matrix W can receive the comments from the privileged
information. Experimental results show that with this very
privileged information, the classification performance can be
significantly improved. Thus we can also take the privileged
label features as a way to boost the classification performance
of the low-rank based models.

As for the future work, our proposed PrML can be easily
extended into Kernel version to cohere with the nonlinearity
in the parameter space. Besides, using SVM-style L2-hinge
loss might further improve the training efficiency [Xu et al.,
2016b]. Theoretical guarantees will be also investigated.
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